3.2 Derivative Formulas for Exponential and Logarithmic Functions

We start this section by looking at the limit

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}
$$

The chart below suggests that the limit is 1 .

h	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01
$\frac{e^{h}-1}{h}$	0.995	0.9995	0.99995	undefined	1.0000	1.0005	1.005

Now, let's try and find the derivative of the function $f(x)=e^{x}$ at any number x. By the definition of the derivative and the limit above we see that

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h} \\
& =e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{x} .
\end{aligned}
$$

This means that e^{x} is its own derivative:

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Now, suppose that the x in e^{x} is replaced by a differentiable function of x, say $u(x)$. We would like to find the derivative of e^{u} with respect to x, i.e., what is $\frac{d}{d x}\left(e^{u}\right)$?

Theorem 3.2.1

$$
\frac{d}{d x}\left(e^{u}\right)=e^{u} \frac{d u}{d x} .
$$

Proof.

By the definition of the derivative we have

$$
\frac{d}{d x}\left(e^{u}\right)=\lim _{h \rightarrow 0} \frac{e^{u(x+h)}-e^{u(x)}}{h}
$$

Since u is differentiable at x, by letting

$$
v=\frac{u(x+h)-u(x)}{h}-u^{\prime}(x)
$$

we find

$$
u(x+h)=u(x)+\left(v+u^{\prime}(x)\right) h
$$

with $\lim _{h \rightarrow 0} v=0$. Similarly, we can write

$$
e^{y+k}=e^{y}+\left(w+e^{y}\right) k
$$

with $\lim _{k \rightarrow 0} w=0$. In particular, letting $y=u(x)$ and $k=\left(v+u^{\prime}(x)\right) h$ we find

$$
e^{u(x)+\left(v+u^{\prime}(x)\right) h}=e^{u(x)}+\left(w+e^{u(x)}\right)\left(v+u^{\prime}(x)\right) h .
$$

Hence,

$$
\begin{aligned}
e^{u(x+h)}-e^{u(x)} & =e^{u(x)+\left(v+u^{\prime}(x)\right) h}-e^{u(x)} \\
& =e^{u(x)}+\left(w+e^{u(x)}\right)\left(v+u^{\prime}(x)\right) h-e^{u(x)} \\
& =\left(w+e^{u}\right)\left(v+u^{\prime}(x)\right) h
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\frac{d}{d x}\left(e^{u}\right) & =\lim _{h \rightarrow 0} \frac{e^{u(x+h)}-e^{u(x)}}{h} \\
& =\lim _{h \rightarrow 0}\left(w+e^{u}\right)\left(v+u^{\prime}(x)\right) \\
& =e^{u} u^{\prime}
\end{aligned}
$$

Next, we want to find the derivative of the function $f(x)=a^{x}$, where $a>0$ and $a \neq 1$. First, note that $f(x)=a^{x}=\left(e^{\ln a}\right)^{x}=e^{x \ln a}$. Thus, by Theorem 3.2.1 we see that

$$
\frac{d}{d x}\left(a^{x}\right)=\frac{d}{d x}\left(e^{x \ln a}\right)=e^{x \ln a} \frac{d}{d x}(x \ln a)=a^{x} \ln a .
$$

Example 3.2.1

Find the derivative of each of the following functions:
(a) $f(x)=3^{x}$
(b) $y=2 \cdot 3^{x}+5 \cdot e^{3 x-4}$.

Solution.

(a) $f^{\prime}(x)=3^{x} \ln 3$.
(b) $y^{\prime}=2\left(3^{x}\right)^{\prime}+5\left(e^{3 x-4}\right)^{\prime}=2 \cdot 3^{x} \ln 3+5(3) e^{3 x-4}=2 \cdot 3^{x} \ln 3+15 \cdot e^{3 x-4}$

We end this section, by finding the derivative of the function $f(x)=\ln x$. In the next section, we will prove the formula

$$
\frac{d}{d x}(\ln x)=\frac{1}{x}
$$

